Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7T.
نویسندگان
چکیده
PURPOSE To investigate the behavior of whole-head and local specific absorption rate (SAR) as a function of trajectory acceleration factor and target excitation pattern due to the parallel transmission (pTX) of spatially tailored excitations at 7T. MATERIALS AND METHODS Finite-difference time domain (FDTD) simulations in a multitissue head model were used to obtain B(1) (+) and electric field maps of an eight-channel transmit head array. Local and average SAR produced by 2D-spiral-trajectory excitations were examined as a function of trajectory acceleration factor, R, and a variety of target excitation parameters when pTX pulses are designed for constant root-mean-square excitation pattern error. RESULTS Mean and local SAR grow quadratically with flip angle and more than quadratically with R, but the ratio of local to mean SAR is not monotonic with R. SAR varies greatly with target position, exhibiting different behaviors as a function of target shape and size for small and large R. For example, exciting large regions produces less SAR than exciting small ones for R >or=4, but the opposite trend occurs when R <4. Furthermore, smoother and symmetric patterns produce lower SAR. CONCLUSION Mean and local SAR vary by orders of magnitude depending on acceleration factor and excitation pattern, often exhibiting complex, nonintuitive behavior. To ensure safety compliance, it seems that model-based validation of individual target patterns and corresponding pTX pulses is necessary.
منابع مشابه
High-flip-angle slice-selective parallel RF transmission with 8 channels at 7 T.
At high magnetic field, B(1)(+) non-uniformity causes undesired inhomogeneity in SNR and image contrast. Parallel RF transmission using tailored 3D k-space trajectory design has been shown to correct for this problem and produce highly uniform in-plane magnetization with good slice selection profile within a relatively short excitation duration. However, at large flip angles the excitation k-sp...
متن کاملMagnetic resonance spectroscopic imaging using parallel transmission at 7T
Conventional magnetic resonance spectroscopic imaging (MRSI), also known as phase-encoded (PE) chemical shift imaging (CSI), suffers from both low signal-to-noise ratio (SNR) of the brain metabolites, as well as inflexible tradeoffs between acquisition time and spatial resolution. In addition, although CSI at higher main field strengths, e.g. 7 Tesla (T), offers improved SNR over clinical 1.5T ...
متن کاملبررسی اثر زاویه صفحات مستغرق در کنترل رسوب به آبگیر جانبی در قوس ۱۸۰ درجه رودخانه
One of the methods for sediment control in lateral intake can be application of submerged vanes in front of the inlet. The establishment of submerged vanes in flow path causes a flow diversion toward the inner arc. In this research, the performance of submerged vanes on sediment transport to the inlet at 180 degree of intake has been investigated. Several experiments were carried out in a labor...
متن کاملStudy of the effect of particle size on the specific absorption rate of cobalt ferrite nanoparticles in a radio frequency magnetic field
Studies show that the size of magnetic nanoparticles has an important impact on their properties. So, the possibility of an optimal size for their use in medical applications has been reported. Therefore, in this study, cobalt ferrite nanoparticles were prepared using co-precipitation method at 80°C; then the powder was annealed in a furnace at 150, 200, 300, 400, 500 and 600°C to obtain nano...
متن کاملEvaluation of Organ Specific peripheral dose for Gamma knife 4C based on Monte Carlo
Introduction: Stereotactic Gamma Knife radiosurgery has been widely used for treating brain tumors. The scattered radiation outside of treatment field (peripheral dose) can induce the secondary cancer to specific organ. This paper investigated the absorbed dose to eyes, thyroid, heart, lung, breast and colon using a Monte Carlo technique for Mird phantom. We also study the ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2008